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Abstract?

Controlling the movement of an autonomous mobile robot in real-world unstruc-
tured environments requires the ability to pursue strategic goals under conditions
of uncertainty, incompleteness, and imprecision. We describe a fuzzy controller for
a mobile robot that can take multiple strategic goals into consideration. Through
the use of fuzzy logic, goal-oriented behavior (e.g., trying to reach a given location)
and reactive behavior (e.g., avoiding previously unknown obstacles on the way) are
smoothly blended into one sequence of control actions. The fuzzy controller has
been implemented on the SRI robot Flakey, and its performance demonstrated in
several different environments, including the first AAAI robotic competition, where

Flakey placed second.

¥Excerpts from this report appeared in the Second IEEE Conference on Fuzzy Systems {San
Francisco, CA, March 1993), and in the Fuzzy Logic '93 Conference (Burlingame, CA, July 19%3).



Contents

1 Introduction

2 The mobile robot test-bed
3 Reactive behavior

4 Beyond pure reactivity

5 Blending of behaviors

6 Conclusions

Appendix: fuzzy rules for some of Flakey’s behaviors

13

17

24

30



1 Introduction

Autonomous operation of a mobile robot in a real environment poses a series of
problems. First, knowledge about the environment is, in general, incomplete, un-
certain, and approximate. For example, maps typically omit some details and tem-
porary features, spatial relations between objects may have changed since the map
was built, and the metric information may be imprecise and inaccurate. An au-
tonomous robot must be able to make effective use of available information regard-
less of its inconvenient characteristics. Second, perceptually acquired information
is usually unreliable. Noise in sensor measurements introduces uncertainty; their
limited range, combined with the effect of environmental features (e.g., occlusion),
leads to imprecise and incomplete data; and errors in the measurement interpreta-
tion process may lead to incorrect beliefs. Robot control, based on an intelligent
combination of prior information and current observations, should be robust and
tolerate errors associated with observations and their interpretation. Real-world
environments also have complex and unpredictable dynamics: objects can move,
other agents can modify the environment, and relatively stable features may change
slowly with time (e.g., seasonal variations). An autonomous robot must be able
to detect unexpected events and promptly react to them (e.g., a person walking in
front of the robot). Finally, the effect of control actions is not completely reliable.
In general, the results produced by a control command can be only approximately
estimated and, sometimes, the command may just fail. The behavior of the robot
should not critically depend on the precision of the effectors, and failures should
be readily recognized and accounted for. In addition, decisions and actions must
take place in real time. New goals, or unexpected events, may require immediate
attention—proving theorems about what to do may not be wise when a truck is

approaching.

Classical planning approaches to the control of mobile robots have been criti-
cized for not providing the real-time responsiveness, or reactivity, that is needed in
real-world environments (unexpected contingencies must be dealt with by reinvok-
ing the planner, usually an extremely costly operation), and for being too inflexible
in the face of uncertainty and imprecision in the information used, and errors in
the execution [Firby, 1987; Kaelbling, 1987; Gat, 1991; Saffiotti, 1993]. To over-



come these limitations, some authors have proposed architectures centered around
a complex controller, or reactive planner (e.g., [Firby, 1987; Kaelbling, 1987]); some
of these proposals have been based on the use of fuzzy control techniques (e.g.,
[Sugeno and Nishida, 1985; Yen and Pfluger, 1992]). These reactive architectures
provide immediate response to unpredicted environmental situations by giving up
the idea of reasoning about future consequences of actions. Reasoning about future
consequences (sometimes called “strategic planning” ), however, is still needed in or-
der to intelligently solve complex tasks (e.g., by deciding not to carry an oil lantern
downstairs to look for a gas leak [Firby, 1987].)

One solution to the dual need for strategic planning and reactivity is to adopt a
two-level model: at the upper level, a planner generates a sequences of operations
whose performance is expected (in an ideal world!) to satisfy the robot’s goals; at
the lower level, a controller tries to achieve these goals while dealing with the envi-
ronmental contingencies. This solution requires that the controller be able to accept
a specific goal as a parameter — this contrasts with typical controllers, including
fuzzy controllers, which are normally defined to achieve one specific, predetermined
functionality of the system. Moreover, the controller must be able to consider sev-
eral such goals simultaneously — for example, to (1) traverse a hallway while (2)
avoiding the obstacles and people on the way and (3) tracking a specific landmark
with its camera. A major problem in the design of such a controller is how to resolve

conflicts between simultaneous goals.

In this paper, we describe a reactive controller for an autonomous mobile robot
that uses fuzzy logic for trading off conflicting goals. Goals are either “innate”,
like avoiding collisions, or *strategic”, communicated by a planner or by a human
programmer. This controller has been implemented on Flakey, the mobile robot
platform of the Artificial Intelligence Center of SRI International; it implements
robust high-level robot actions (like traversing a hallway, or crossing a door), and

provides capabilities for

¢ Robust, uncertainty-tolerating goal-directed activity
¢ Real-time reactivity to unexpected contingencies

¢ Blending of multiple goals



The scope of the techniques we describe extends, however, beyond this particular
test-bed, as they effectively deal with basic problems in the development of intelli-
gent autonomous systems such as the attainment of multiple, possibly conflicting,
objectives; the integration of numerical control and planning techniques based on
symbolic reasoning; and the construction and utilization of approximate and incom-

plete models of the world.

The formal bases for the proposed controller have been set forth by Ruspini [Rus-
pini, 1990; Ruspini, 1991a] after the seminal works by Zadeh (e.g., [Zadeh, 1978]).
In a nutshell, each goal is associated with a function that maps each perceived sit-
uation to a measure of desirability of possible actions from the point of view of
that goal. The notion of a contrel structure is used for introducing high-level goals
into the fuzzy controller. Intuitively, a control structure is an object in the robot’s
workspace, together with a desirability relation and a context of applicability: typ-
ical control structures are locations to reach, walls to follow, doors to enter, and
so on. Each desirability function induces a particular behavior — one obtained by
executing the actions with higher desirability. Belaviors induced by many simul-
taneous goals can be smoothly blended by using the mechanisms of fuzzy logic. In
particular, reactive and goal-oriented behaviors are blended in this way into one
sequence of control actions. This compositional approach to complex behavior is
formally explored in deeper detail in a2 companion technical report [Saffiotti et al.,
1993aj.

The next section gives a brief overview of Flakey and outlines its present ar-
chitecture. Section 3 sketches the architecture of the controller, and describes the
way reactive behaviors are implemented. Section 4 deals with the introduction of
high-level goals into the reactive controller. Section 5 attacks the problems of blend-
ing different behaviors, and presents several illustrative experiments run on Flakey.

Finally, Section € discusses the results and conclusions.



2 The mobile robot test-bed

Flakey is a custom-built mobile robot platform approximately 1 m high and 0.6
m in diameter for use in an indoor environment. There are two independently
driven wheels, one on each side, giving a maximum linear velocity of about 0.5 m/s.
Flakey’s sensors include a ring of 12 sonars, giving information about distances of
objects up to about 2 m; wheel encoders, providing information about current linear
and rotational velocity; and a video camera, currently used in combination with a
laser to provide dense depth information over a small area in front of Flakey. A
passive-vision system is currently being added. In addition, Flakey has enough on-
board computational power to run all the low-level and high-level interpretation and
control processes; high-level processes can also be run remotely through a radio link
for better programming and debugging convenience.

Figure 1 illustrates the part of Flakey’s architecture that is relevant to the con-
troller. The sensorial input is processed by a number of interpretation processes at
different levels of abstraction and complexity, and the results of interpretation are
stored in the local perceptual space (LPS). The LPS represents a portion of a Carte-
sian plane, centered on the robot, containing information about its vicinity. The
LPS integrates information coming from the sensors at different levels of abstraction
and interpretation (represented by different levels of gray in the figure). In Figure 1,
points corresponding to surfaces identified by the sonars and the camera are visible
in the LPS — Flakey is the octagon in the middle of the LPS, in top-view. The
line on the left is a wall hypothesis built by the sensor interpretation processes. The
fuzzy controller can use any of the objects represented in the LPS at input: this
input is checked every 100 ms, and a corresponding control action is generated.

The LPS also integrates information coming from the planner, in the form of
control structures, abstract representations of local strategic goals to be achieved
by the robot. Intuitively, a control structure stands for an object in the robot’s
workspace together with a fuzzy goal predicate involving this object. For example,
the circle near the upper left corner of the LPS in Figure 1 is a control structure: it
consists of a position, and the fuzzy predicate at measuring how much Flakey is at

that position.

A set of control structures may be used to express a decomposition of a complex
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Figure 1: A simplified view of Flakey’s architecture.

task into basic subtasks. These structures can be directly specified by humans or
generated automatically by standard Al planning or decision-making techniques.
In our current experiments, we use a simple planner to generate a set of control
structures that achieves a prespecified navigational goal. This planner uses a sparse
topological map of the environment annotated with approximate metric information.
When input to the LPS, control structures induce a bias over the reactive execution
of the fuzzy controller. More details on our approach to the integration between
planning and fuzzy control can be found in a companion technical report [Saffiotti et
al., 1993al.

The fuzzy controller regulates the execution of basic control activities called
behaviors. Intuitively, each behavior is one particular control regime that focuses



on achieving one specific, predetermined goal, like avoiding obstacles, or reaching
a specific location (given as a parameter). Hence, each behavior can be thought
of as being one separate parametric fuzzy controller, implementing a particular
skill. Behaviors take their input from the LPS: behaviors intended to promote
quick reactivity (e.g., obstacle avoidance) utilize low-level perceptual data, while
behaviors intended to promote purposeful actions rely on control structures as their
main input. The next two sections are devoted to an analysis of our solution to

implement reactive and purposeful behaviors, respectively.

Usually, several behaviors are simultaneously active in the fuzzy controller. For
example, at some time, a behavior for traversing a corridor, another to avoid ob-
stacles, and a third one to facilitate door detection, may all be considered by the
controller to determine the adequacy of each possible control action. Multiple, possi-
bly conflicting, behaviors are blended into a dynamic sequence of control actions by
means of fuzzy logic techniques. These actions are the result of trade-offs between
the poals associated with each active behavior. Before the behaviors are combined,
the output of each behavior is weighted according to how much that behavior ap-
plies to the current contextual situation — for example, a behavior for following a
wall is scarcely applicable in the situation where there is an obstacle standing in
front of Flakey, while one for avoiding obstacles is more adequate. The contezt rules
encode the information about the applicability condition of each behavior. Behavior

blending is the subject of Section 5.



3 Reactive behavior

Each behavior in the fuzzy controller is responsible for producing a certain type of
movement, aimed at achieving or maintaining a particular goal — for example, to
stay away from obstacles. Desirable behavioral traits are expressed as quantitative
preferences over possible control actions from the perspective of the goal associated
with that behavior. For example, a behavior for avoiding obstacles could map
configurations of sonar readings that correspond to the presence of an obstacle on
the left of the robot into a function that prefers actions that steer the robot to the
right. Behaviors like this one, directly mapping sensor configurations in the LPS
to a preference over possible control actions, are called reactive behaviors: these are

the most basic form of behavior that Flakey can exhibit.

In more formal terms, and following the semantic characterization of Ruspini
[Ruspini, 1991a; Ruspini, 1991b], we describe each behavior B in terms of a desir-
ability function
(1) Desg : State x Control — {0, 1],

that measures, for each state s (i.e., configuration of the LPS) and for each control
vector ¢, the desirability Desg(s,c) of applying the control ¢ when the state is s
from the point of view of B. Equivalently, we can say that Desg associates each
situation s with the fuzzy set C of control values characterized by the membership
function px(¢) = Desp(s,c). In general, ¢ is an n-dimensional vector of values for
all the control variables; in the case of Flakey, ¢ is a pair («,#), where « is a linear

acceleration and &4 is a turning angle.

It is important to notice that desirability functions are less committal than
classical control functions — or similar formal objects used in other approaches
to robot control, like Khatib’s pseudo-potentials [Khatib, 1986] of Arkin’s motor
schemas [Arkin, 1990]). In fact, desirability functions do not map input states to
effector commands (or controls), but to a measure of desirability over the space
of these commands. The intuition behind this is that many alternative commands
can generate, to a greater or lesser extent, the same type of movement, or behavior.
This has been made precise by formalizing behaviors in the framework of multivalued
logic.

In practice, each behavior is implemented in Flakey by a fuzzy machine struc-
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Figure 2: Implementation of a behavior.

tured as shown in Figure 2 (the “activation level” is discussed later). The fuzzy
state is a vector of fuzzy variables {(each having a value in [0, 1]) representing the
truth values of a set of fuzzy propositions of interest (e.g., “obstacle-close-on-left”).
At every cycle, the Update module looks at the (partially) interpreted perceptual
input stored in LPS, and produces a new fuzzy state.

The Fuzzy Rule-Set module contains a set of fuzzy rules of the form
(2) IF A; TREN C;,

where A; is a propositional formula in fuzzy logic incorporating fuzzy predicates
over state variables (and possibly the fuzzy connectives AND, OR, and NOT), and
C; is a fuzzy set of control values: for any possible control action ¢, C(c) tells how
much ¢ is a good instance of C. When evaluating the antecedent A;, we use max,
min, and complement to 1 to compute the truth value of disjunction, conjunction,

and negation, respectively.?

For example, Flakey includes a ICEEP-OFF behavior, intended to keep it safely
away from occupied areas (obstacles). This behavior includes the following rule R:

?Throughout this paper we use the standard min t-norm (®), and the correspondent
max t-conorm (@) [Schweizer and Sklar, 1983]). These are the operations used in the actual
implementation.
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IF obstacle-close-in-front AND NOT obstacle-close-on-left
THEN turn sharp-left

Figure 3 shows the truth value of the “obstacle-close” predicate as a function of
the distance d of the closest object detected by Flakey’s sensors, and the “sharp-left”
predicate as a function of the turning angle. Consider the obstacle avoidance rule
above, and suppose a state s where the sonar sensors detect some object in front of
Flakey at 0.7 m. Then, the above rule R would generate the following desirability
function Dg:

Dg(s,5)= min(0,0.8) =0
Dg(s,7.5)= min(0.5,0.8) =0.5
Dg(s,10)= min(1,0.8) =0.8.

where we are only considering the value of the # (turning) control variable.

The rule set in a behavier B normally includes several rules like (2), each ex-
pressing a set of desirable controls to use when the state s satisfies the antecedent.
Each rule R; in the set computes a corresponding desirability function D; as above;
these are then unioned using the @ (max) operator to obtain an overall desirability
function

Desp(s,a) = Di(s,a)® ... ® Dyp(s,a)

It is the responsibility of the design engineer to assure that Desg is an adequate
approximation of the intended desirability function for the specific behavior B, that

10

- Tum (deg)



is, that the rules produce the expected effect. An interesting problem is what
guidance, if any, the theory can give us on how to generate sets of rules that produce
a given control. This problem is a subject of our current study {Ruspini and Saffiotti,
1993].

Once a desirability function Desg(s,c) has been computed for the current state
s for each control ¢, the fuzzy controller needs to select one single preferred control
action ¢ to send to the effectors for execution. This choice is made using centroid

defuzzification, that is,

(3) e J ¢ Desp(s,c)dc

[ Desp(s,c)de’

The use of (3) has been found satisfactory in our experiments, provided that the

rules in a control schema do not suggest dramatically opposite actions in the same
situation: when this happens, averaging using (3) simply does not make sense. (The
best trade-off between avoiding an incoming train from the left or from the right is
seldom to stay on the rails!) Our empirical strategy has been to make sure that the
premises of conflicting control rules are not applicable to the same situation; other
authors have preferred to use alternative choice rules (e.g., [Yen and Pfluger, 1992}).

Figure 4 exemplifies Flakey’s reactivity. The environment shown is similar to
the one at the 1992 robotic competition of AAAI [Congdon et al., 1993a]. Flakey
did not have any map of the environment, but simply roamed around at random
while trying to stay away from the obstacles. The simple WANDER behavior used in
this run consists of 10 rules, shown on the left:* from the top, there are two rules for
keeping a constant cruising speed, four to smoothly modify the heading and speed
of Flakey to keep it far from obstacles, and four rules for engaging in emergency
maneuvers when an immediate danger is detected. Each line lists the name of a
rule, the truth value of its antecedent in the configuation shown (indicated by the
number of stars), and its consequent. The rules used by Flakey in this example are
listed in the Appendix.

3This behavior is actually composed of three distinct behaviors, and three rule sets — we’ll
return to this example in Section 5.

11
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4 Beyond pure reactivity

The behaviors discussed in the previous section are purely reactive: at each cy-
cle, Flakey selects an action solely on the basis of the current state of the world
as perceived by its sensors and represented in the local perceptual space. Purely
reactive behaviors, intended to provide quick, simple reactions to potential dangers
(e.g., avoiding collisions) typically use sensor data that has undergone little or no
interpretation. Engaging into more purposeful activities than just wandering around
requires more than pure reactivity: we need to take explicit goals into consideration.
For example, we may want Flakey to reach a given position at a given velocity, and

still (reactively) avoid the obstacles on the way.?

In our approach, a goal is represented by a control structure. Intuitively, a control
structure is a virtual object (an artifact) that we put in the LPS, associated with a
behavior that encodes the way to react to the presence of this object. For example,
a “control-point” is a marker for a (z, y) location, together with a heading and a
velocity: the associated behavior Go-T'0-CP reacts to the presence of a control
point in the LPS by generating the commands to reach that position, heading and
velocity. The circle near the upper left corner of Figure 1 represents a control point.

More precisely, a control structure is a triple
(4) §= (A:B:C>a

where A is an artifact, B is a behavior that refers to the artifact, and C is a context
of applicability (see below). Such a control structure implicitly defines a goal: the
goal to achieve the situation promoted by behavior B with respect to the artifact
A. A theoretical analysis of the relationship between control structures and goals is
given in [Saffiotti et al., 1993a).

Purposeful behaviors react to the presence of control structures in the LPS by
generating a corresponding preference for controls. For example, a behavior for
following a wall reacts to the presence of a control structure

S1 = (Walll, FoLLow, clear-path)

*Reactive behaviors are also associated with (innate) goals, hardwired in the definition of the
behavior. We are now interested in dynamically assigning explicit strategic goals to Flakey.

13



in the LPS by generating preferences for the commands that keep Flakey parallei
to the wall Walll and at a fixed distance and proceeding at a given cruising speed.
Hence, putting a control structure in the LPS is the basic way to communicate a
goal to the fuzzy controller (provided that the controller includes a corresponding
behavior).

Purposeful behaviors are implemented in the same form as reactive behaviors
(see Figure 2 above), the only (formally invisible) difference being that the fuzzy
state depends in general on properties of the artifact of the control structure — for
example, its position relative to Flakey. Correspondingly, the antecedents A;’s of
fuzzy rules associated with those behaviors include fuzzy predicates that depend on
those properties. For example, the FoLLow behavior responds to the presence of
the control structure 51 above by preferring controls that lead Flakey along the wall
within a given distance; it includes the following rule:

IF too-close-on-right(wall) THEN turn moderate-left

where wall is the artifact of the control structure to which the behavior is reacting
(in this case, Walll).

Our fuzzy controller includes several purposeful behaviors, which react to differ-
ent types of control structures, for example, FoLLow for walls and corridor, REACH
for locations and control points, Cross for doors and junctions, and FACE for lo-
cations and objects. The behaviors that we are currently using for Flakey typically
consist of two to ten rules, using four to twenty fuzzy predicates. The reader can find
in the Appendix the actual rules we wrote to implement several of these behaviors.

Figure 5 shows Flakey’s LPS window while Flakey was executing a Go-To-CP.
The local perceptual space of Flakey (in top view) may be seen on the right. Flakey
appears in the middle of the window, pointing upwards; the small points around on
the right and near the top of the window mark sonar readings, indicating the possible
presence of some object; the segment marked by a “W” indicates an interpretation
of these data: in this case, a wall hypothesis has been generated. The target control
point is in front of Flakey: the “tail” indicates the desired entry direction. The
movement of flakey is evident in the wake of small rectangles it leaves behind.

The artifacts used in control structures are identifiers of internal variables repre-

14



Figure 5: Flakey’s LPS while engaged in a Go-To-CP behavior.

senting the aspects of the state that are relevant to those control structure. Artifacts
do not need to correspond to physical objects in the environment: an imaginary spot
to reach can be an artifact. When the artifact corresponds to a physical element
of the world, however, it provides a way to link, or anchor the action of the agent
to the environment. To make all this more concrete, consider the following control
structure

52 = (Corrl, FoLLow, clear-path)

aimed to move down a given corridor Corrl. Figure 6 shows Flakey’s LPS during
the execution of this control structure. The double lines indicate the corridor ar-
tifact; FoLLOW keeps the robot traveling between these lines, assuming that they
correspond to the real corridor (a). The position of the physical walls can be seen
by looking at the sonar readings (the small dots); because of errors in the map and
in Flakey’s self-localization, the artifact does not correspond exactly to the real cor-
ridor. In (b), however, enough sonar readings have been collected to interpolate two
long segments interpreted as the corridor’s walls indicated by “W™). The position of
the corridor is inferred from such interpretations (indicated by “C”). This position

15
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Figure 6: Anchoring the artifact used for action with perception: corridor following
before anchoring (a) and after anchoring (b).

is then used to anchor the artifact to the perceived corridor: from now on, the ac-
tion will take place with respect to the actually perceived corridor. The anchoring
mechanism, together with the intrinsic tolerance of fuzzy rules, is essential to allow

Flakey to operate by relying only on approximate maps and imprecise sensing,.

16



5 Blending of behaviors

We have seen how our fuzzy controller can implement both reactive and goal-oriented
behaviors. As noted in the introduction, several behaviors of both types can coexist
in an agent’s normal activity: for example, a purposeful behavior for following a wall
can coexist with one for keeping the load well balanced, and with another one for
avoiding the obstacles along the way. Correspondingly, several instances of the fuzzy
machine in Figure 2 are simultaneously active in the fuzzy controller. At any given
moment, the robot’s overall behavior is the result of the integration, or blending, of

all the behaviors that are active at that moment.

In its simplest form, blending of behaviors is obtained by combining the corre-
sponding desirability functions into a composite one by means of the @ t-conorm

(min, in our case):
Des(s,c) = Desy(s,c) @ Desa(s,¢)® ... Desy(s,c),

where Des; is the desirability function produced by the :-th behavior, and then
choosing a most desired control for execution using centroid defuzzification (3).
This way of composing behaviors is schematized in the architecture shown in Fig-
ure 1. Care must be taken, however, of possible conflicts among behaviors aiming at
different, incompatible goals. These conflicts would result in desirability functions
that assign high values to opposite actions: simple t-conorm composition should not

be used in these cases.

The key observation here is that each behavior has in general its own contert
of applicability. Correspondingly, we would like the impact of the control actions
suggested by each behavior to be weighted according to that behavior’s degree of
applicability to the current situation. For example, the FoLLowW-WALL behavior is
most applicable when the wall is near and the path is clear; while the preferences ex-
pressed by the KEeP-OFF behavior become more relevant when there is an obstacle
on the way. To make this precise, recall that the definition (4) of a control struc-
ture 5; included a fuzzy predicate C; expressing its context of applicability. Hence,
given n control structures {51,...,5,}, with corresponding behaviors {By, ..., B,}
and contexts {C1,...,C,}, we define the context-dependent blending of these control

17
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Figure 7: A snapshot of Flakey’s control window while approaching a control point.

structures to be the behavior characterized by the following desirability function:
(5) Des(s,¢) = (Desy(s,c)®C1(s)) @ ... D (Des,(s,¢) ® Cpn(s)).

In practice, context-dependent blending of behaviors is implemented by discount-

ing the output of each behavior using context rules of the form
1F C; THEN a,pply(B.-) .

The truth value of the context C; is used as the activation level input to the
fuzzy machine in Figure 2. This value is typically a combination of values in the
fuzzy state. The output of each fuzzy machine is discounted by the corresponding
activation level through ® and then combined through @ into the overall desirability
function as in (5). This function is then defuzzified by (3) to produce a trade-off
control, as shown in Figure 1. It is important to notice that the choice of a preferred
control is done after all the desirability functions have been combined; this contrasts
with other approaches to behavior composition where first one preferred control
is computed for each behavior, and then all the preferred controls are combined
together (e.g., [Arkin, 1990]).
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Figure 7 illustrates the combination process as seen in Flakey’s control window
during an actual run. Flakey’s LPS window is on the right; the rectangle on the left
of Flakey in this window highlights a dangerously close object. The window on the
left lists all the currently active rules, grouped into three rule sets corresponding
to the three currently active behaviors: on top, the rules for the Go-FORWARD
behavior; below, those for Go-To-CP, for KEEP-OFF, and for Avorp-CoOLLISIONS.
The context rules for blending these three behaviors, which are not shown in the

figure, are

IF collision-danger
THEN APPLY(Avoid-Collisions)

IF obstacle-approaching
THEN APPLY(Keep-0£ff)

IF NOT(collision-danger)
AND NOT(obstacle-approaching)
THEN APPLY (Go-To-CP, Go-Forward)

In the situation depicted in Figure 7, Flakey is going too slowly and heading toward
a point to the right of the CP. Some desirability is then assigned to the accelerate and
the turn-left actions. However, the close obstacle on the left causes the activation
level of the KEEP-OFF obstacle avoidance behavior to be high, at the expense of
the other behaviors. The turn-right action associated with KEEP-OFF receives,
therefore, the highest possible total desirability (as indicated by the Seven Stars).
The small box in front of Flakey indicates the resulting turning control—a few
degrees to the right. The overall result of the blending process leads Flakey around
obstacles while en route to attaining the position and bearing of the control point.
Flakey’s speed in this experiment was between 200 and 300 mm/s.

As a second example of blending reactive and goal-oriented behavior, consider the
task of following a corridor while avoiding possible obstacles. The following context
rules express the desired interaction between the obstacle-avoidance behavior KEEP-

OFF, and the corridor-following behavior FoLLow.
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Figure 8: Another example of blending reactive and purposeful behavior.
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IF collision~danger
THEN APPLY(Keep-0ff)

IF NOT(collision-danger)
THEN APPLY(Follow)

Figure 8 shows the result of this blending. We have chosen here a more concise
graphical representation: the bars graphs show the activation level and the preferred
controls (turn and acceleration) for each behavior at two critical instants; the bottom
line in each graph shows the result of the blending. In (a), an obstacle has been
detected, and the preferences of KEEP-OFF are dominating; later, when the path
is clear, the goal-oriented preferences expressed by FOLLOW regain importance (b).
The graph at the bottom of Figure 8 plots the activation level of each behavior over

time.

It is interesting to go back to the wandering example considered in Section 3 —
see Figure 4. The WANDER behavior is actually obtained by blending three distinct
behaviors: KEEP-OFF, AVoID-COLLISIONS (a behavior that looks at the nearest
sonar readings and proposes drastic actions when an immediate risk of collision is
detected), and Go-ForwARD (which keeps Flakey going at a fixed cruising velocity,
given as a parameter, when there are no obstacles in the way). The activation levels
of KEEP-OFF and AvoiD-COLLISIONS are given by the state variable “approaching-
obstacle”; the complement of this value gives the activation level for Go-FORWARD.
The visual result for an external observer is that Flakey “follows its nose”, while

smoothly turning away from obstacles as it approaches them.

The examples above considered the blending of a single goal-achieving behavior
with reactive behavior. In general, many goals can be considered simultaneously;
in particular, all the (sub)goals that form a full plan can be represented as control
structures, each one associated with a context that describes the situations where
a particular goal becomes relevant. In this regard, control structures act as an ad-
equate declarative representation for action that can be shared between a classical
symbolic planner and the fuzzy controller. In Figure 1, the planner generates plans
in the form of sets of control structures, and puts these control structures in the LPS
to be considered (modulo their context) by the fuzzy controller. In this way, our

approach can combine high-level symbolic planning techniques with low-level con-
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tinuous numerical control, without requiring substantial conceptual modifications to
the traditional roles of planners and controllers in Al approaches. The companion
technical report [Saffiotti et al., 1993a] elaborates more on this form of integration
between classical Al planning and fuzzy control.

To better understand the use of sets of control structures as complex plans,
consider the example shown in Figure 9. Flakey had been given the goal to visit
Room-5, and used a simple goal regression planner to generate a corresponding set
of control structures based on a sparse topological map annotated with approxi-
mate metric information. No obstacle was represented in the map. The plan, in a
simplified form, consists of the following four control structures®

51 = (Obstacle, KEEP-OFF, near(Obstacle))

52 = (Corr2, FoLLow, -near(Obstacle) A at(Corr2) A —near(Corrl))
83 = (Corrl, FoLLow, -near(Obstacle)} A at{Corrl) A —near(Door5))
54 = (Doorl, Cross, ~near{Obstacle} A near{Door5))

Figure 9 shows an instance of an execution of this plan, along with the corresponding
level of activation over time of each control structure in the actual plan. Total

execution time was approximately 80 s, at top speeds of 400 mm/s.

The dynamics of the contexts results in sequencing the execution of the con-
trol structures: at (a), Flakey is at{Corr2) and 52 is most active; at (d), Flakey
transitions from being at(Corr2) to being at{Corrl), and the activation level of 53
begins to increase, at the expense of §2. A similar pattern of smooth sequencing
occurs around {g). Notice also the interaction between purposeful behaviors and
reactive obstacle avoidance — after (c), and around (d), (e}, and (g). In particular,
the interaction right after (g) is worth a comment. The CRross behavior relies on
prior information about the door position; as this turns out to be fairly off, KEgPp-
OFF raises to avoid a collision with the edge of the wall. The combined effect is
that Flakey engages the opening that is “more or less at the estimated position.”
The ability to integrate the map knowledge available at planning time with the
perceptual knowledge available at execution time is one advantage of using control
structures as a representation of a plan shared between the symbolic level of the

planner, and the perceptuo-motor level of the fuzzy controller.

5The actual plan has more control structures, including some for perceptual actions—the Sense
control structures shown in the picture—and more complex contexts; see [Saffiotti et al., 1993a] for
a fuller treatment of this example.
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Figure 9: Sample execution of a full plan. The temporal evolution of the activation
levels of the control structures in the plan is shown in the lower part.
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6 Conclusions

We have defined a mechanism based on fuzzy logic for blending multiple behaviors
aimed at achieving different, possibly conflicting goals, and discussed its implemen-
tation on the SRI mobile robot, Flakey. Goals are either built-in, as in most fuzzy
controllers, or dynamically set from outside the controller. Typically, the built-in
goals correspond to reactive behaviors (like avoiding collisions), while the dynamic
ones are motion or perceptual strategic goals communicated by a planner. Context-
dependent blending of behaviors ensures that strategic goals be achieved as much

as possible, while a high reactivity is maintained.

Our behavior blending mechanism has been originally inspired to the technique
proposed by Berenji et al. [Berenji et al., 1990] for dealing with multiple goals in
fuzzy control. There are, however, two important differences: first, our context
mechanism dynamically modifies the degrees of importance of each goal; second, we

allow the introduction of high-level, situation-specific goals in the controller.

From another perspective, the work presented here fits in the tradition of the
“two-level” approaches to robot control, where a strategic planner is used to generate
guidelines to a reactive controller (e.g., [Arkin, 1990; Payton et al., 1990; Gat, 1991]).
In our case, a plan consists in a set of control structures. Hence, our plans can
find close relatives in some of the recent approaches to autonomous agency where
plans are seen as sets of condition — action rules [Suchman, 1987; Schoppers, 1987;
Payton et al., 1990]. However, we believe that basing our architecture on multi-
valued logics results in improved robustness {e.g., more tolerance to sensor nojse
and knowledge imprecision), while granting a better understanding of the underlying

combination mechanisms.

Finally, many current approaches to robot control deal with multiple goals us-
ing the so-called “potential fields” method [Khatib, 1986; Arkin, 1990]: goals are
represented by pseudo-forces, which may be thought of as representatives of most
desirable behavior from that goal’s viewpoint. These optimal forces are then com-
bined, as physical vectors, to produce a resultant force that summarizes their joint
effect. In our approach, by contrast, the goals’ desirability functions, rather than a
suminary description, are combined into a joint desirability function, from which a
most desired trade-off control is extracted. We have already noticed that desirability
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Figure 10: How context-dependent blending of behaviors helps to avoid potential
local minima.

functions are less committal than classical control functions—or pseudo-potentials—
in that they map each input state to a fuzzy set of possible controls rather than
to one “best” control. One technical advantage of describing control by multival-
ued desirability mappings is that suboptimal combinations can be more precisely
characterized [Saffiotti et al., 1993a).

A second difference between our behavior combination technique and most potential-
field based methods is that our approach takes behaviors’ context of applicability
into account; this provides greater control over the combination, and helps in man-
aging the local minima possibly arising from the local combination of behaviors
[Latombe, 1991]. The problem is illustrated in Figure 10 (top): the robot needs
to mediate the tendency to move toward the goal, and the tendency to stay away
from the obstacle. A straightforward combination of these two opposite tenden-
cies (whether they are described by desirability measures, potentia] fields [Khatib,
1986], motor schemas [Arkin, 1990], or formalisms) may result in the production of
a zone of local equilibrium (local minimum): when coming from the left edge, the
robot would be first attracted and then trapped into this zone. By using context
rules to reason about the relative importance of goals, context-dependent blending
of behaviors provides a way around this problem. Figure 10 shows the path fol-
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lowed by Flakey in a simulated run (top), and the corresponding activation levels
of the KEEP-OFF and REACH behaviors (bottom). In (a), Flakey has perceived the
obstacle; as the obstacle becomes nearer, the KEgr-OrF behavior becomes more
active, at the expenses of the REACH behavior. In this way, the “attractive power”
of the goal is gradually shaded away by the obstacle, and Flakey responds more
and more to the obstacle-avoidance suggestions alone. The REACH behavior regains
importance, however, as soon as Flakey is out of danger (b).

As a final difference between our technique and potential-field methods, we men-
tion that we express both goals and applicability conditions as formulae in a (multi-
valued) logical language. Complex goals and constraints can often be described
more easily in a logical form than in the analytical form of a potential field function.
Moreover, the ability to specify the context used in the combination as a logical
proposition provides a hook to higher-level symbolic processes: we have seen above
that a planner can produce complex controls by associating the right context to

each behavior.

The technique proposed in this paper has been implemented in the SRI mobile
robot Flakey, resulting in extremely smooth and reliable movement in navigating in
unstructured, real-world environments. The performance of Flakey’s controller has
been demonstrated on various occasions, including innumerable runs in the corri-
dors and offices of the AI Center during working hours, and pamphlet distribution
during crowded coffee-breaks at the second IEEE Conference on Fuzzy Sets and
Systems (San Francisco, CA, April 1993). Flakey’s ability was also demonstrated at
the first AAAI robotic competition, held in San Jose, CA, in July 1992 [Congdon et
al., 1993b). Flakey accomplished all the given tasks while smoothly getting around
obstacles (whose positions were not known beforehand) and people, and placed over-
all second. Flakey’s reliable reactivity is best summarized in one judge’s comment:
“Only robot I felt I could sit or lie down in front of.” (What he actually did!)

Acknowledgments John Lowrance, Daniela Musto, Karen Myers, and Leonard
Wesley contributed to the development of the ideas presented in this paper. Nicolas
Helft implemented a first version of Flakey’s controller.
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Appendix: fuzzy rules for some of Flakey’s behaviors

This appendix lists the fuzzy rules for the main behaviors implemented for Flakey.
The rules are as they appear in the Lisp code of Flakey’s controller, uncommented,
and are only shown to give the reader a feeling of the use of fuzzy rules as a robot
programming language. For the most part, however, their meaning should be rea-
sonably intuitive. All the variables used in the antecedents are in the fuzzy state of
the corresponding behavior, and take values in [0, 1]; appropriate update functions,
not shown, set these variables at every cycle based on the current content of the
Local Perceptual Space.

;3 Emergency maneuvers when an immediate danger is detected

ry

(defrule :->cul_de_sac<—
:antecedent ({and” (not-moving) (dans-un-cul-de-sac)
(not~ (escaping-from-cul-de-sac)})))
:consequent :turn-left)

(defrule :collision_right
:antecedent ({and~ (or~ collision-right collision-front-right)
(not~ collision-front-left}))
:consequent :turn-left)

(defrule :collision_left
:antecedent ((and~ (or” collision-left collision-front-left)
(not~ collision-right)))
:consequent :turn-right)

(defrule :collision_front

:antecedent (collision-front)
:consequent :slow-down)
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{defrule

(defrule

(defrule

{(defrule

:obst_caution

:antecedent ((and~ too-f
(or-

;consequent :slow-dowmn)

tobst_right

:antecedent ({or~ obstac
(and”

:consequent :turn-left)

:obst_left

rantecedent ({or~ obstac
(and~

:consequent :turn-right)

:obst_straight

ast-for-obstacle
obstacle~in-front
{(and~ obstacle-left-side obstacle-right-side))))

le-right-side
obstacle—angled-right
obstacle-near

(not~ obstacle-left-side))})})

le-left-side
obstacle-angled-left
obstacle—near

(not~ obstacle-right-side))))

:antecedent ((and~ obstacle-straight

(not~
{not~

obstacle-left-side)
obstacle-right-side})})

:consequent *preferred—-obstacle—turn*}

;; Maintain a constant cruising velocity

(defrule

(defrule

:too_slow
:antecedent (too-slow)
:consequent :accelerate)

:too_fast
:antecedent (too-fast)
:consequent :slow-down)
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;3 —===-==—-—-————— Go To Pogition —=--—r—v-—o-—v

'
; Reach a (X, Y) position, and stop

- oW owr ws

(defrule :pos_on_left
rantecedent ({and” position-on-left (not~ position-achieved)))
:consequent :turn-left)

(defrule :pos_on_right
:antecedent ((and~ position-on-right (not~ position-achieved)))
:consequent :turn-right)

(defrule :pos_here!
:antecedent ({and~ position-achieved moving))
:consequent ;slow-dowh)

; Run within a given (virtual) lane
e.g., to follow a wall, or a corridoer

i e wa we

- me

{defrule :angled_left
rantecedent (({and~ rhs-clear angled-left near-lane))
:consequent :turn-right)

(defrule :angled_right
:antecedent ((and~ lhs-clear angled-right near-lane))
tconsequent :turn-left)

(defrule :left_of_lanse
:antecedent ((and~ rhs-clear on-left (not~ angled-right)))
:consequent :turn-right)

(defrule :right_of_lane

:antecedent ({and” lhs-clear on-right (not™ angled-left)))
:consequent :turn-left)
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(defrule

(defrule

(defrule

(defrule

(defrule

(defrule

sadjust_vel
:antecedent ((and” near-cp (not~ velocity—ok}))
:consequent :accelerate)

radjust_th_<
:antecedent ({and™ near-cp cp-on-left))
:consequent :turn-left)

radjust_th_>
:antecedent ((and~ near-cp cp-on-right))
:consequent :turn-right)

imanouver_slow
:antecedent ({and~ arcund-cp (not~ heading-ok)))
:consequent :slow-down)

:heading_left
:antecedent ((and~ heading-left rhs-clear (mot~ near-cp)))
iconsequent :turn-right)

:heading_right

:antecedent ((and~ heading-right lhs-clear (not~ near-—cp)))
:consequent :turn-left)
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